Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biol Res ; 56(1): 57, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932867

RESUMO

BACKGROUND: Obstructive sleep apnea (OSA) is characterized by recurrent episodes of chronic intermittent hypoxia (CIH), which has been linked to the development of sympathoexcitation and hypertension. Furthermore, it has been shown that CIH induced inflammation and neuronal hyperactivation in the nucleus of the solitary tract (NTS), a key brainstem region involved in sympathetic and cardiovascular regulation. Since several studies have proposed that NTS astrocytes may mediate neuroinflammation, we aimed to determine the potential contribution of NTS-astrocytes on the pathogenesis of CIH-induced hypertension. RESULTS: Twenty-one days of CIH induced autonomic imbalance and hypertension in rats. Notably, acute chemogenetic inhibition (CNO) of medullary NTS astrocytes using Designer Receptors Exclusively Activated by Designers Drugs (DREADD) restored normal cardiac variability (LF/HF: 1.1 ± 0.2 vs. 2.4 ± 0.2 vs. 1.4 ± 0.3, Sham vs. CIH vs. CIH + CNO, respectively) and markedly reduced arterial blood pressure in rats exposed to CIH (MABP: 82.7 ± 1.2 vs. 104.8 ± 4.4 vs. 89.6 ± 0.9 mmHg, Sham vs. CIH vs. CIH + CNO, respectively). In addition, the potentiated sympathoexcitation elicit by acute hypoxic chemoreflex activation in rats exposed to CIH was also completely abolished by chemogenetic inhibition of NTS astrocytes using DREADDs. CONCLUSION: Our results support a role for NTS astrocytes in the maintenance of heightened sympathetic drive and hypertension during chronic exposure to intermittent hypoxia mimicking OSA.


Assuntos
Hipertensão , Apneia Obstrutiva do Sono , Ratos , Animais , Núcleo Solitário , Astrócitos , Hipertensão/etiologia , Apneia Obstrutiva do Sono/complicações , Hipóxia
2.
Antioxidants (Basel) ; 12(10)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37891953

RESUMO

PIEZO1 is a mechanosensitive cation channel implicated in shear stress-mediated endothelial-dependent vasorelaxation. Since altered shear stress patterns induce a pro-inflammatory endothelial environment, we analyzed transcriptional profiles of human endothelial cells to determine the effect of altered shear stress patterns and subsequent prooxidant and inflammatory conditions on PIEZO1 and mechanosensitive-related genes (MRG). In silico analyses were validated in vitro by assessing PIEZO1 transcript levels in both the umbilical artery (HUAEC) and vein (HUVEC) endothelium. Transcriptional profiling showed that PIEZO1 and some MRG associated with the inflammatory response were upregulated in response to high (15 dyn/cm2) and extremely high shear stress (30 dyn/cm2) in HUVEC. Changes in PIEZO1 and inflammatory MRG were paralleled by p65 but not KLF or YAP1 transcription factors. Similarly, PIEZO1 transcript levels were upregulated by TNF-alpha (TNF-α) in diverse endothelial cell types, and pre-treatment with agents that prevent p65 translocation to the nucleus abolished PIEZO1 induction. ChIP-seq analysis revealed that p65 bonded to the PIEZO1 promoter region, an effect increased by the stimulation with TNF-α. Altogether this data showed that NF-kappa B activation via p65 signaling regulates PIEZO1 expression, providing a new molecular link for prooxidant and inflammatory responses and mechanosensitive pathways in the endothelium.

3.
Adv Exp Med Biol ; 1427: 53-60, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37322335

RESUMO

Obstructive sleep apnea (OSA), a sleep breathing disorder featured by chronic intermittent hypoxia (CIH), is associated with pulmonary hypertension (PH). Rats exposed to CIH develop systemic and lung oxidative stress, pulmonary vascular remodeling, and PH and overexpress Stim-activated TRPC-ORAI channels (STOC) in the lung. Previously, we demonstrated that 2-aminoethyl-diphenylborinate (2-APB)-treatment, a STOC-blocker, prevents PH and the overexpression of STOC induced by CIH. However, 2-APB did not prevent systemic and pulmonary oxidative stress. Accordingly, we hypothesize that the contribution of STOC in the development of PH induced by CIH is independent of oxidative stress. We measured the correlation between right ventricular systolic pressure (RVSP) and lung malondialdehyde (MDA) with the gene expression of STOC and morphological parameters in the lung from control, CIH-treated, and 2-APB-treated rats. We found correlations between RVSP and increased medial layer and STOC pulmonary levels. 2-APB-treated rats showed a correlation between RVSP and the medial layer thickness, α-actin-ir, and STOC, whereas RVSP did not correlate with MDA levels in CIH and 2-APB-treated rats. CIH rats showed correlations between lung MDA levels and the gene expression of TRPC1 and TRPC4. These results suggest that STOC channels play a key role in developing CIH-induced PH that is independent from lung oxidative stress.


Assuntos
Hipertensão Pulmonar , Hipertensão , Ratos , Animais , Hipertensão Pulmonar/etiologia , Remodelação Vascular , Estresse Oxidativo , Hipóxia
4.
J Physiol ; 601(24): 5495-5507, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37119020

RESUMO

Obstructive sleep apnoea (OSA), characterized by chronic intermittent hypoxia (CIH), is considered to be an independent risk for hypertension. The pathological cardiorespiratory consequences of OSA have been attributed to systemic oxidative stress, inflammation and sympathetic overflow induced by CIH, but an emerging body of evidence indicates that a nitro-oxidative and pro-inflammatory milieu within the carotid body (CB) is involved in the potentiation of CB chemosensory responses to hypoxia, which contribute to enhance the sympathetic activity. Accordingly, autonomic and cardiovascular alterations induced by CIH are critically dependent on an abnormally heightened CB chemosensory input to the nucleus of tractus solitarius (NTS), where second-order neurons project onto the rostral ventrolateral medulla (RVLM), activating pre-sympathetic neurons that control pre-ganglionic sympathetic neurons. CIH produces oxidative stress and neuroinflammation in the NTS and RVLM, which may contribute to the long-term irreversibility of the CIH-induced alterations. This brief review is mainly focused on the contribution of nitro-oxidative stress and pro-inflammatory molecules on the hyperactivation of the hypoxic chemoreflex pathway including the CB and the brainstem centres, and whether the persistence of autonomic and cardiorespiratory alterations may depend on the glial-related neuroinflammation induced by the enhanced CB chemosensory afferent input.


Assuntos
Corpo Carotídeo , Apneia Obstrutiva do Sono , Humanos , Corpo Carotídeo/fisiologia , Doenças Neuroinflamatórias , Hipóxia , Inflamação/metabolismo , Estresse Oxidativo
5.
Neurophysiol Clin ; 53(2): 102840, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36716506

RESUMO

OBJECTIVES: The sympathetic skin response (SSR) is a well-established test, whereas the electrochemical skin conductance (ESC) is still under evaluation. Our aim was therefore to assess the diagnostic accuracy of ESC to detect abnormal sudomotor function, using SSR as a reference test. METHODS: A cross sectional observational study was performed of 61 neurological patients assessed for possible sudomotor dysfunction and 50 age-matched healthy controls (HC). Patients with diagnoses of vasovagal syncope (VVS, n=25), Parkinson's disease (PD, n=15), multiple system atrophy (MSA, n=11) and peripheral neuropathies (PN, n=10) were included. Sudomotor function was assessed with SSR and ESC tests in all participants. The absence of SSR in the palms or soles indicates abnormal sudomotor function. Receiver operating characteristic (ROC) analysis was used to assess the diagnostic value of the ESC. Cardiovascular autonomic (CV-Aut) function was evaluated through the Ewing score, based on the following tests: Heart rate change with deep breathing, Valsalva ratio, 30:15 ratio, blood pressure changes on standing and during isometric exercise. A Ewing score ≥ 2 indicates the presence of CV-Aut dysfunction. RESULTS: Mean SSR amplitudes and ESC values showed differences between HC and patients with MSA or PN (p < 0.05), but not in patients with VVS or PD. Absence of SSR was associated with abnormal ESC (p < 0.05). Patients with abnormal CV-Aut dysfunction had lower ESC (p< 0.05). Palm ESC (P-ESC) and sole ESC (S-ESC) assessment had a sensitivity of 0.91 and 0.95 to predict sudomotor dysfunction, with a specificity of 0.78 and 0.85, respectively. The area under ROC curve was 0.905 and 0.98, respectively. CONCLUSIONS: ESC in palms and soles has a high diagnostic accuracy for sudomotor dysfunction as detected by absent SSR in patients with MSA and PN.


Assuntos
Doenças do Sistema Nervoso Autônomo , Doenças do Sistema Nervoso Periférico , Humanos , Resposta Galvânica da Pele , Estudos Transversais , Sistema Nervoso Autônomo , Doenças do Sistema Nervoso Autônomo/diagnóstico
6.
J Sleep Res ; 32(1): e13660, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35706374

RESUMO

Hyperhidrosis is characterized by excessive sweating beyond thermoregulatory needs that affects patients' quality of life. It results from an excessive stimulation of eccrine sweat glands in the skin by the sympathetic nervous system. Hyperhidrosis may be primary or secondary to an underlying cause. Nocturnal hyperhidrosis is associated with different sleep disorders, such as obstructive sleep apnea, insomnia, restless legs syndrome/periodic limb movement during sleep and narcolepsy. The major cause of the hyperhidrosis is sympathetic overactivity and, in the case of narcolepsy type 1, orexin deficiency may also contribute. In this narrative review, we will provide an outline of the possible mechanisms underlying sudomotor dysfunction and the resulting nocturnal hyperhidrosis in these different sleep disorders and explore its clinical relevance.


Assuntos
Hiperidrose , Narcolepsia , Síndrome das Pernas Inquietas , Transtornos do Sono-Vigília , Humanos , Qualidade de Vida , Relevância Clínica , Hiperidrose/complicações , Narcolepsia/complicações , Transtornos do Sono-Vigília/complicações , Síndrome das Pernas Inquietas/etiologia
7.
Sleep ; 45(11)2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-35878762

RESUMO

The autonomic nervous system (ANS) plays an important role in the coordination of several physiological functions including sleep/wake process. Significant changes in ANS activity occur during wake-to-sleep transition maintaining the adequate cardiorespiratory regulation and brain activity. Since sleep is a complex homeostatic function, partly regulated by the ANS, it is not surprising that sleep disruption trigger and/or evidence symptoms of ANS impairment. Indeed, several studies suggest a bidirectional relationship between impaired ANS function (i.e. enhanced sympathetic drive), and the emergence/development of sleep disorders. Furthermore, several epidemiological studies described a strong association between sympathetic-mediated diseases and the development and maintenance of sleep disorders resulting in a vicious cycle with adverse outcomes and increased mortality risk. However, which and how the sleep/wake control and ANS circuitry becomes affected during the progression of ANS-related diseases remains poorly understood. Thus, understanding the physiological mechanisms underpinning sleep/wake-dependent sympathetic modulation could provide insights into diseases involving autonomic dysfunction. The purpose of this review is to explore potential neural mechanisms involved in both the onset/maintenance of sympathetic-mediated diseases (Rett syndrome, congenital central hypoventilation syndrome, obstructive sleep apnoea, type 2 diabetes, obesity, heart failure, hypertension, and neurodegenerative diseases) and their plausible contribution to the generation of sleep disorders in order to review evidence that may serve to establish a causal link between sleep disorders and heightened sympathetic activity.


Assuntos
Diabetes Mellitus Tipo 2 , Disautonomias Primárias , Transtornos do Sono-Vigília , Humanos , Sono/fisiologia , Transtornos do Sono-Vigília/complicações , Progressão da Doença
8.
Front Physiol ; 13: 841828, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370769

RESUMO

Obstructive sleep apnea (OSA), a sleep breathing disorder featured by chronic intermittent hypoxia (CIH), is associate with pulmonary hypertension. Rats exposed to CIH develop lung vascular remodeling and pulmonary hypertension, which paralleled the upregulation of stromal interaction molecule (STIM)-activated TRPC-ORAI Ca2+ channels (STOC) in the lung, suggesting that STOC participate in the pulmonary vascular alterations. Accordingly, to evaluate the role played by STOC in pulmonary hypertension we studied whether the STOC blocker 2-aminoethoxydiphenyl borate (2-APB) may prevent the vascular remodeling and the pulmonary hypertension induced by CIH in a rat model of OSA. We assessed the effects of 2-APB on right ventricular systolic pressure (RVSP), pulmonary vascular remodeling, α-actin and proliferation marker Ki-67 levels in pulmonary arterial smooth muscle cells (PASMC), mRNA levels of STOC subunits, and systemic and pulmonary oxidative stress (TBARS) in male Sprague-Dawley (200 g) rats exposed to CIH (5% O2, 12 times/h for 8h) for 28 days. At 14 days of CIH, osmotic pumps containing 2-APB (10 mg/kg/day) or its vehicle were implanted and rats were kept for 2 more weeks in CIH. Exposure to CIH for 28 days raised RVSP > 35 mm Hg, increased the medial layer thickness and the levels of α-actin and Ki-67 in PASMC, and increased the gene expression of TRPC1, TRPC4, TRPC6 and ORAI1 subunits. Treatment with 2-APB prevented the raise in RVSP and the increment of the medial layer thickness, as well as the increased levels of α-actin and Ki-67 in PASMC, and the increased gene expression of STOC subunits. In addition, 2-APB did not reduced the lung and systemic oxidative stress, suggesting that the effects of 2-APB on vascular remodeling and pulmonary hypertension are independent on the reduction of the oxidative stress. Thus, our results supported that STIM-activated TRPC-ORAI Ca2+ channels contributes to the lung vascular remodeling and pulmonary hypertension induced by CIH.

9.
Curr Vasc Pharmacol ; 20(3): 272-283, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35319374

RESUMO

Sustained and intermittent hypoxia produce vasoconstriction, arterial remodeling, and hypertension in the lung. Stromal interaction molecule (STIM)-activated transient receptor potential channels (TRPC) and calcium release-activated calcium channel protein (ORAI) channels (STOC) play key roles in the progression of pulmonary hypertension in pre-clinical models of animals subjected to sustained and intermittent hypoxia. The available evidence supports the theory that oxidative stress and hypoxic inducible factors upregulate and activate STIM-activated TRPC-ORAI Ca2+ channels, contributing to the pulmonary remodeling and hypertension induced by sustained hypoxia. However, less is known about the effects of oxidative stress and hypoxic inducible factors on the modulation of STIM-activated TRPC-ORAI channels following chronic intermittent hypoxia. In this review, we examined the emerging evidence supporting the theory that oxidative stress and hypoxic inducible factors induced by intermittent hypoxia upregulate and activate STIM-activated TRPC-ORAI Ca2+ channels. In addition, we used bioinformatics tools to search public databases for the genes involved in the upregulation of STIMactivated TRPC-ORAI Ca2+ channels and compare the differential gene expression and biological processes induced by intermittent and sustained hypoxia in lung cells.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio , Hipertensão Pulmonar , Hipertensão , Moléculas de Interação Estromal , Canais de Potencial de Receptor Transitório , Animais , Cálcio/metabolismo , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Sinalização do Cálcio , Hipertensão/metabolismo , Hipertensão Pulmonar/etiologia , Hipóxia/complicações , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Moléculas de Interação Estromal/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo
10.
Front Cardiovasc Med ; 9: 1070935, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36620616

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is a complex, heterogeneous disease characterized by autonomic imbalance, cardiac remodeling, and diastolic dysfunction. One feature that has recently been linked to the pathology is the presence of macrovascular and microvascular dysfunction. Indeed, vascular dysfunction directly affects the functionality of cardiomyocytes, leading to decreased dilatation capacity and increased cell rigidity, which are the outcomes of the progressive decline in myocardial function. The presence of an inflammatory condition in HFpEF produced by an increase in proinflammatory molecules and activation of immune cells (i.e., chronic low-grade inflammation) has been proposed to play a pivotal role in vascular remodeling and endothelial cell death, which may ultimately lead to increased arterial elastance, decreased myocardium perfusion, and decreased oxygen supply to the tissue. Despite this, the precise mechanism linking low-grade inflammation to vascular alterations in the setting of HFpEF is not completely known. However, the enhanced sympathetic vasomotor tone in HFpEF, which may result from inflammatory activation of the sympathetic nervous system, could contribute to orchestrate vascular dysfunction in the setting of HFpEF due to the exquisite sympathetic innervation of both the macro and microvasculature. Accordingly, the present brief review aims to discuss the main mechanisms that may be involved in the macro- and microvascular function impairment in HFpEF and the potential role of the sympathetic nervous system in vascular dysfunction.

11.
Physiology (Bethesda) ; 37(3): 128-140, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34866399

RESUMO

Emergent evidence indicates that the carotid body (CB) chemoreceptor may sense systemic inflammatory molecules and is an afferent arm of the anti-inflammatory reflex. Moreover, a proinflammatory milieu within the CB is involved in the enhanced CB chemosensory responsiveness to oxygen following sustained and intermittent hypoxia. In this review, we focus on the physiopathological participation of CBs in inflammatory diseases, such as sepsis and intermittent hypoxia.


Assuntos
Corpo Carotídeo , Anti-Inflamatórios/uso terapêutico , Humanos , Hipóxia/patologia , Inflamação/patologia , Reflexo
12.
Physiol Rev ; 101(3): 1177-1235, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33570461

RESUMO

The carotid body (CB) is the main peripheral chemoreceptor for arterial respiratory gases O2 and CO2 and pH, eliciting reflex ventilatory, cardiovascular, and humoral responses to maintain homeostasis. This review examines the fundamental biology underlying CB chemoreceptor function, its contribution to integrated physiological responses, and its role in maintaining health and potentiating disease. Emphasis is placed on 1) transduction mechanisms in chemoreceptor (type I) cells, highlighting the role played by the hypoxic inhibition of O2-dependent K+ channels and mitochondrial oxidative metabolism, and their modification by intracellular molecules and other ion channels; 2) synaptic mechanisms linking type I cells and petrosal nerve terminals, focusing on the role played by the main proposed transmitters and modulatory gases, and the participation of glial cells in regulation of the chemosensory process; 3) integrated reflex responses to CB activation, emphasizing that the responses differ dramatically depending on the nature of the physiological, pathological, or environmental challenges, and the interactions of the chemoreceptor reflex with other reflexes in optimizing oxygen delivery to the tissues; and 4) the contribution of enhanced CB chemosensory discharge to autonomic and cardiorespiratory pathophysiology in obstructive sleep apnea, congestive heart failure, resistant hypertension, and metabolic diseases and how modulation of enhanced CB reactivity in disease conditions may attenuate pathophysiology.


Assuntos
Sistema Nervoso Autônomo/metabolismo , Corpo Carotídeo/metabolismo , Células Quimiorreceptoras/metabolismo , Hipóxia/metabolismo , Animais , Sistema Cardiovascular/metabolismo , Humanos
13.
J Hypertens ; 39(6): 1125-1133, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33560061

RESUMO

BACKGROUND AND OBJECTIVE: Chronic intermittent hypoxia (CIH), one of the main features of obstructive sleep apnea (OSA), enhances carotid body-mediated chemoreflex and induces hypertension and breathing disorders. The carbamylated form of erythropoietin (cEpo) may have beneficial effects as it retains its antioxidant/anti-inflammatory and neuroprotective profile without increasing red blood cells number. However, no studies have evaluated the potential therapeutic effect of cEpo on CIH-related cardiorespiratory disorders. We aimed to determine whether cEpo normalized the CIH-enhanced carotid body ventilatory chemoreflex, the hypertension and ventilatory disorders in rats. METHODS: Male Sprague-Dawley rats (250 g) were exposed to CIH (5% O2, 12/h, 8 h/day) for 28 days. cEPO (20 µg/kg, i.p) was administrated from day 21 every other day for one more week. Cardiovascular and respiratory function were assessed in freely moving animals. RESULTS: Twenty-one days of CIH increased carotid body-mediated chemoreflex responses as evidenced by a significant increase in the hypoxic ventilatory response (FiO2 10%) and triggered irregular eupneic breathing, active expiration, and produced hypertension. cEpo treatment significantly reduced the carotid body--chemoreflex responses, normalizes breathing patterns and the hypertension in CIH. In addition, cEpo treatment effectively normalized carotid body chemosensory responses evoked by acute hypoxic stimulation in CIH rats. CONCLUSION: Present results strongly support beneficial cardiorespiratory therapeutic effects of cEpo during CIH exposure.


Assuntos
Eritropoetina , Síndromes da Apneia do Sono , Animais , Humanos , Hipóxia , Masculino , Ratos , Ratos Sprague-Dawley , Respiração , Síndromes da Apneia do Sono/tratamento farmacológico
14.
Front Physiol ; 12: 765281, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35082688

RESUMO

Calcium signaling is key for the contraction, differentiation, and proliferation of pulmonary arterial smooth muscle cells. Furthermore, calcium influx through store-operated channels (SOCs) is particularly important in the vasoconstrictor response to hypoxia. Previously, we found a decrease in pulmonary hypertension and remodeling in normoxic newborn lambs partially gestated under chronic hypoxia, when treated with 2-aminoethyldiphenyl borinate (2-APB), a non-specific SOC blocker. However, the effects of 2-APB are unknown in neonates completely gestated, born, and raised under environmental hypoxia. Accordingly, we studied the effects of 2-APB-treatment on the cardiopulmonary variables in lambs under chronic hypobaric hypoxia. Experiments were done in nine newborn lambs gestated, born, and raised in high altitude (3,600 m): five animals were treated with 2-APB [intravenous (i.v.) 10 mg kg-1] for 10 days, while other four animals received vehicle. During the treatment, cardiopulmonary variables were measured daily, and these were also evaluated during an acute episode of superimposed hypoxia, 1 day after the end of the treatment. Furthermore, pulmonary vascular remodeling was assessed by histological analysis 2 days after the end of the treatment. Basal cardiac output and mean systemic arterial pressure (SAP) and resistance from 2-APB- and vehicle-treated lambs did not differ along with the treatment. Mean pulmonary arterial pressure (mPAP) decreased after the first day of 2-APB treatment and remained lower than the vehicle-treated group until the third day, and during the fifth, sixth, and ninth day of treatment. The net mPAP increase in response to acute hypoxia did not change, but the pressure area under the curve (AUC) during hypoxia was slightly lower in 2-APB-treated lambs than in vehicle-treated lambs. Moreover, the 2-APB treatment decreased the pulmonary arterial wall thickness and the α-actin immunoreactivity and increased the luminal area with no changes in the vascular density. Our findings show that 2-APB treatment partially reduced the contractile hypoxic response and reverted the pulmonary vascular remodeling, but this is not enough to normalize the pulmonary hemodynamics in chronically hypoxic newborn lambs.

15.
Pulm Circ ; 10(1 Suppl): 13-22, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33110495

RESUMO

Obstructive sleep apnea (OSA), a breathing disorder featured by chronic intermittent hypoxia (CIH) is associated with pulmonary hypertension (PH). Rodents exposed to CIH develop pulmonary vascular remodeling and PH, but the pathogenic mechanisms are not well known. Overexpression of Stim-activated Transient Receptor Potential Channels (TRPC) and Calcium Release-Activated Calcium Channel Protein (ORAI) TRPC-ORAI Ca2+ channels (STOC) has been involved in pulmonary vascular remodeling and PH in sustained hypoxia. However, it is not known if CIH may change STOC levels. Accordingly, we studied the effects of CIH on the expression of STOC subunits in the lung and if these changes paralleled the progression of the vascular pulmonary remodeling and PH in a preclinical model of OSA. Male Sprague-Dawley rats (∼200 g) were exposed to CIH (5%O2, 12 times/h for 8 h) for 14, 21, and 28 days. We measured right ventricular systolic pressure (RVSP), cardiac morphometry with MRI, pulmonary vascular remodeling, and wire-myographic arterial responses to KCl and endothelin-1 (ET-1). Pulmonary RNA and protein STOC levels of TRPC1, TRPC4, TRPC6, ORAI 1, ORAI 2, and STIM1 subunits were measured by qPCR and western blot, and results were compared with age-matched controls. CIH elicited a progressive increase of RVSP and vascular contractile responses to KCl and ET-1, leading to vascular remodeling and augmented right ventricular ejection fraction, which was significant at 28 days of CIH. The levels of TRPC1, TRPC4, TRPC 6, ORAI 1, and STIM 1 channels increased following CIH, and some of them paralleled morphologic and functional changes. Our findings show that CIH increased pulmonary STOC expression, paralleling vascular remodeling and PH.

16.
Curr Hypertens Rep ; 21(11): 89, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31599367

RESUMO

PURPOSE OF REVIEW: Obstructive sleep apnea (OSA), featured by chronic intermittent hypoxia (CIH), is an independent risk for systemic hypertension (HTN) and is associated with pulmonary hypertension (PH). The precise mechanisms underlying pulmonary vascular remodeling and PH in OSA are not fully understood. However, it has been suggested that lung tissue hypoxia, oxidative stress, and pro-inflammatory mediators following CIH exposure may contribute to PH. RECENT FINDINGS: New evidences obtained in preclinical OSA models support that an enhanced carotid body (CB) chemosensory reactiveness to oxygen elicits sympathetic and renin-angiotensin system (RAS) overflow, which contributes to HTN. Moreover, the ablation of the CBs abolished the sympathetic hyperactivity and HTN in rodents exposed to CIH. Accordingly, it is plausible that the enhanced CB chemosensory reactivity may contribute to the pulmonary vascular remodeling and PH through the overactivation of the sympathetic-RAS axis. This hypothesis is supported by the facts that (i) CB stimulation increases pulmonary arterial pressure, (ii) denervation of sympathetic fibers in pulmonary arteries reduces pulmonary remodeling and pulmonary arterial hypertension (PAH) in humans, and (iii) administration of angiotensin-converting enzyme (ACE) or blockers of Ang II type 1 receptor (ATR1) ameliorates pulmonary remodeling and PH in animal models. In this review, we will discuss the supporting evidence for a plausible contribution of the CB-induced sympathetic-RAS axis overflow on pulmonary vascular remodeling and PH induced by CIH, the main characteristic of OSA.


Assuntos
Corpo Carotídeo/fisiopatologia , Hipertensão Pulmonar/fisiopatologia , Hipóxia/fisiopatologia , Sistema Renina-Angiotensina/fisiologia , Apneia Obstrutiva do Sono/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia , Animais , Humanos , Hipertensão/etiologia , Hipertensão/fisiopatologia , Estresse Oxidativo , Apneia Obstrutiva do Sono/complicações
17.
Physiol Genomics ; 51(4): 109-124, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30822223

RESUMO

Sustained chronic hypoxia (CH) produces morphological and functional changes in the carotid body (CB). Nitric oxide (NO) and endothelin-1 (ET-1) play a major role as modulators of the CB oxygen chemosensory process. To characterize the effects of CH related to normoxia (Nx) on gene expression, particularly on ET-1 and NO pathways, primary cultures of rat CB cells were exposed to 7 days of CH. Total RNA was extracted, and cDNA-32P was synthesized and hybridized with 1,185 genes printed on a nylon membrane Atlas cDNA Expression Array. Out of 324 differentially expressed genes, 184 genes were upregulated, while 140 genes were downregulated. The cluster annotation and protein network analyses showed that both NO and ET-1 signaling pathways were significantly enriched and key elements of each pathway were differentially expressed. Thus, we assessed the effect of CH at the protein level of nitric oxide synthase (NOS) isoforms and ET-1 receptors. CH induced an increase in the expression of endothelial NOS, inducible NOS, and ETB. During CH, the administration of SNAP, a NO donor, upregulated ETB. Treatment with Tezosentan (ET-1 receptor blocker) during CH upregulated all three NOS isoforms, while the NOS blocker L-NAME induced upregulation of iNOS and ETB and downregulated the protein levels of ETA. These results show that CH for 7 days changed the cultured cell CB gene expression profile, the NO and ET-1 signaling pathways were highly enriched, and these two signaling pathways interfered with the protein expression of each other.


Assuntos
Corpo Carotídeo/metabolismo , Endotelina-1/genética , Expressão Gênica/genética , Hipóxia/genética , Óxido Nítrico Sintase/genética , Isoformas de Proteínas/genética , Receptor de Endotelina A/genética , Animais , Regulação para Baixo/genética , Óxido Nítrico/genética , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo III , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/genética , Regulação para Cima/genética
18.
Biol Res ; 51(1): 57, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30572940

RESUMO

BACKGROUND: chronic hypoxia increases basal ventilation and pulmonary vascular resistance, with variable changes in arterial blood pressure and heart rate, but it's impact on heart rate variability and autonomic regulation have been less well examined. We studied changes in arterial blood pressure, heart rate and heart rate variability (HRV) in rabbits subjected to chronic normobaric hypoxia (CNH; PB ~ 719 mmHg; FIO2 ~ 9.2%) for 14 days and assess the effect of autonomic control by acute bilateral vagal denervation. RESULTS: exposure to CNH stalled animal weight gain and increased the hematocrit, without affecting heart rate or arterial blood pressure. Nevertheless, Poincaré plots of the electrocardiographic R-R intervals showed a reduced distribution parallel to the line of identity, which interpreted as reduced long-term HRV. In the frequency domain, CNH reduced the very-low- (< 0.2 Hz) and high-frequency components (> 0.8 Hz) of the R-R spectrograms and produced a prominent component in the low-frequency component (0.2-0.5 Hz) of the power spectrum. In control and CNH exposed rabbits, bilateral vagotomy had no apparent effect on the short- and long-term HRV in the Poincaré plots. However, bilateral vagotomy differentially affected higher-frequency components (> 0.8 Hz); reducing it in control animals without modifying it in CNH-exposed rabbits. CONCLUSIONS: These results suggest that CNH exposure shifts the autonomic balance of heart rate towards a sympathetic predominance without modifying resting heart rate or arterial blood pressure.


Assuntos
Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Hipóxia/fisiopatologia , Vagotomia , Animais , Glicemia/fisiologia , Peso Corporal/fisiologia , Doença Crônica , Modelos Animais de Doenças , Hematócrito , Masculino , Coelhos
19.
Front Physiol ; 9: 1440, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30374309

RESUMO

Obstructive sleep apnea (OSA) is the most common form of sleep disordered breathing and is associated with wide array of cardiovascular morbidities. It has been proposed that during OSA, the respiratory control center (RCC) is affected by exaggerated afferent signals coming from peripheral/central chemoreceptors which leads to ventilatory instability and may perpetuate apnea generation. Treatments focused on decreasing hyperactivity of peripheral/central chemoreceptors may be useful to improving ventilatory instability in OSA patients. Previous studies indicate that oxidative stress and inflammation are key players in the increased peripheral/central chemoreflex drive associated with OSA. Recent data suggest that erythropoietin (Epo) could also be involved in modulating chemoreflex activity as functional Epo receptors are constitutively expressed in peripheral and central chemoreceptors cells. Additionally, there is some evidence that Epo has anti-oxidant/anti-inflammatory effects. Accordingly, we propose that Epo treatment during OSA may reduce enhanced peripheral/central chemoreflex drive and normalize the activity of the RCC which in turn may help to abrogate ventilatory instability. In this perspective article we discuss the potential beneficial effects of Epo administration on ventilatory regulation in the setting of OSA.

20.
Adv Exp Med Biol ; 1071: 61-68, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30357734

RESUMO

The carotid body (CB) is the main arterial chemoreceptor involved in oxygen sensing. Upon hypoxic stimulation, CB chemoreceptor cells release neurotransmitters, which increase the frequency of action potentials in sensory nerve fibers of the carotid sinus nerve. The identity of the molecular entity responsible for oxygen sensing is still a matter of debate; however several ion channels have been shown to be involved in this process. Connexin-based ion channels are expressed in the CB; however a definitive role for these channels in mediating CB oxygen sensitivity has not been established. To address the role of these channels, we studied the effect of blockers of connexin-based ion channels on oxygen sensitivity of the CB. A connexin43 (Cx43) hemichannel blocking agent (CHBa) was applied topically to the CB and the CB-mediated hypoxic ventilatory response (FiO2 21, 15, 10 and 5%) was measured in adult male Sprague-Dawley rats (~250 g). In normoxic conditions, CHBa had no effect on tidal volume or respiratory rate, however Cx43 hemichannels inhibition by CHBa significantly impaired the CB-mediated chemoreflex response to hypoxia. CHBa reduced both the gain of the hypoxic ventilatory response (HVR) and the maximum HVR by ~25% and ~50%, respectively. Our results suggest that connexin43 hemichannels contribute to the CB chemoreflex response to hypoxia in rats. Our results suggest that CB connexin43 hemichannels may be pharmacological targets in disease conditions characterized by CB hyperactivity.


Assuntos
Corpo Carotídeo/fisiologia , Conexina 43/antagonistas & inibidores , Hipóxia , Animais , Conexina 43/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...